探索规律教学反思

时间:2024-02-22 10:32:36
探索规律教学反思

探索规律教学反思

身为一名优秀的人民教师,课堂教学是我们的任务之一,我们可以把教学过程中的感悟记录在教学反思中,快来参考教学反思是怎么写的吧!下面是小编收集整理的探索规律教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。

探索规律教学反思1

本课时主要引导学生借助计算器探索积的一些变化规律和商不变的规律,以及运用这些规律进行简便计算和解决一些简单的实际问题。在学习这部分内容之前,学生已经学习了整数乘、除法和使用计算器进行计算,有了一定的学习基础。因此,重点应放在对规律的探索方面,教学完本单元内容,我有以下几点体会:

1、教学时要留足够的时间,让学生发现探索规律,并且有独立思考的时间。上课时有些思维敏捷的孩子会一下子发现规律,并脱口而出,于是,我就让这个学生来说说是怎么想的,给还处于懵懂的孩子一些提示,小结规律后,再通过学生自己写算式来验证发现的规律,这样就加深学生对规律的认识。当然,对那些“聪明”孩子的上课习惯还是要加强培养。

2、将课堂延伸到课外,在上课前,先让学生在家里算一算例题,找找规律,这样可以让学生带着问题上课,提高课堂效率,也给学生留出了充足的时间发现规律。

3、克服思维惰性,加强估算能力的培养。发现和总结出规律后,就可以进行简便计算,一些较难的两位数乘两位数可以很快得出答案,但有些孩子为了避免犯错,会回避用规律来进行计算,而是采用比较繁琐的列竖式。出现这种情况可能有两种原因,一种是课堂上对规律的感知还不够,要适当的给这部分孩子增加练习量,进一步感受规律,提高规律掌握的熟练度。另一种是,怕粗心犯错,对于这部分孩子则可让他们算完后,进行估算,这样有利于他们养成自觉检查的好习惯,通过估算也能发展学生的思维能力和数感。

探索规律教学反思2

师:我想继续和大家玩一个游戏,愿意吗?这个游戏叫“我的特异功能”。我需要小助手和我配合一下。(学生上台,教师出示下表)

因数因数积积的变化

师:(对一生)这是一张表格,你的任务就是根据老师的要求来填表、回答问题。其他同学帮忙看,注意看、注意听。

师:(背朝学生)小助手,请在表格第一行任写一个乘法算式,如果因数比较大,可以用计算器计算积。小助手,请告诉我,积是多少?

(小助手回答)

师:小助手,第二行的第一个因数不变,第二个因数任意乘一个数,告诉我,第二个因数乘了几?

(小助手回答)

师:同学们,虽然我不知道原来的两个因数是多少,但我知道现在的积是多少,是××。不相信,你们算算看。

师:相信老师有特异功能吗?(不相信)那你们猜猜老师是怎么算出现在的积的?

生:我也能算出来,用上一行的积去乘6。

师:是吗?大家算算看。

(学生计算,表示同意)

师:我想采访一下这位同学,你怎么想到用上一行的积乘这个数的?(指第二个因数乘的数

)生:因为这个算式中一个因数不变,另一个因数乘6,所以积也同时乘6。

师:那如果乘7呢?

生:积也乘7。

师:如果乘99呢?

生:积也乘99。

师:这个同学提出了一个很有意思的想法,他认为一个因数不变,另一个因数乘几,积也乘几(板书)。大家同意他的说法吗?(同意)我可有点半信半疑。这个说法我们可以称之为猜想,究竟对不对需要进一步来验证。思考一下,如何验证?

生:可以把这个猜想用到实际中。

师:对,事实胜于雄辩,咱们可以举些例子。

(学生举例。一组学生用因数乘因数算出积是多少,另一组学生用猜想的方法算出积,并比较结果)

因数

因数

积的变化

29

46

1334

29

46×6

8004

1334×6

29×80

46

106720

1334×80

29

46×10

13340

1334×10

29×20

46

26680

1334×20

师:同学们,咱们任意举了几个例子,请大家仔细观察整张表格,你发现了什么?

生:刚才那位同学说的猜想是正确的。一个因数不变,另一个因数乘几,积也同样乘几。

师:看来在29×46=1334这个乘法算式中,这个猜想是成立的,那么在其他乘法算式中,这个猜想是否还成立呢?

生:是成立的。

师:口说无凭,咱们还是得用事实说话。

(学生自主举例,并在小组里交流)

师:有没有哪位同学举的例子不符合猜想的,请举手!(无人举手)看来,在所有的乘法算式里,这个猜想都是成立的。其实老师在

开始的游戏中说有特异功能,只不过想考考大家。你们真不简单,我提议大家为自己的表现鼓鼓掌。

师:在所有的乘法算式里,其实都存在这样一个规律,这个规律是什么?

(学生齐答)

[反思]

教材在引导学生探索“积的变化规律”时,主要的意图是让学生通过具体丰富的实例,运用不完全归纳法,总结“一个因数不变,另一个因数乘几,积也乘几”的规律。虽然教材在此前的教学内容中为“积的变化规律”进行了大量的铺垫和准备,但学生对规律的感知和认识仍然要经历逐步清晰的过程。为此,教师设计了教师有“特异功能”的游戏情境,调动学生的积极性,在具体情境中唤起学生已有的经验,从而作出猜想。在此基础上的验证环节,努力体现研究的科学性和严谨性。教师先引导学生重点研究在29×46=1334这道乘法算式中猜想成立,再在其他的乘法算式中进行验证,这样的设计凸显了不完全归纳法的要求。另外,在这一过程中,教师的主导作用和学生的主体作用都得到了恰到好处的发挥

探索规律教学反思3

这节课最重要的我认为是引导学生经历探索发现“商不变规律”的过程,因此我非常重视和期待生成的过程。在观察4个算式的被除数和除数的变化时,我预设了3 个阶段----1、末尾0多少的变化;2同时扩大或缩小相同的倍数;同时乘或除以相同的数(0除外)。在这个过程中,让学生充分的通过全班交流、小组合作、同桌探讨等方式,运用观察、比较、分析、概括归纳和验证的学法,积极主动地探索规律,符合学生的认知规律,使学生在这个过程中不但发现、理解和掌握了商不变的规律,最重要的经历了整个探究过程,为学生以后的发展,尤其是自主学习的能力的培养起到一定的促进作用。实际的效果也比较明显,这是我本节课最大的收获。

因此,在以后的教学中,我还要根据学生情况 ……此处隐藏7104个字……,发展思维能力。

3、使学生在参与数学学习活动的过程中,学会与他人交流,体会与他人合作交流的价值,逐步形成良好的与他人合作的习惯和意识。

4、使学生在发现规律的过程中,体验数学活动的探索性和创造性,感受数学结论的严谨性和确定性,获得成功的乐趣,增强学习数学的兴趣和自信心。

教学过程:

一、游戏引入:

用计算器玩游戏

要求:在1-9中任意选一个数,然后用计算器把这个数乘3,再乘127,算出结果。只要一报出结果,老师马上能知道,一开始在1-9中任意选择的是哪个数。

【意图:计算器作为探索的工具并以游戏方式载入一是有利于激活学生熟练运用计算器的能力,同时对游戏中隐含的规律产生好奇,为后继进一步运用计算器探索规律做好心理上的准备】

二、揭示课题:

1、刚才我们用计算器玩了个小游戏,今天课上我们还要用到计算器,我们要用它来探索规律。(板书课题:用计算器探索规律)

2、看了这个课题,现在你最想了解的是什么?通过交流让学生感受到三个方面:①什么规律? ②怎样研究? ③有什么用?

【意图:一开始提出探索的目标有利于学生明确探索的内容和方向,把重点集中到探索和发现规律上来,本课的着力点自然地凸现了出来。】

三、探索规律

(一)建立猜想

1、用计算器计算:36×30的积。

2、36、30在这个乘法算式中叫做什么?1080又叫做什么?

3、猜想:如果其中的一个因数不变,另一个因数乘一个数,得到的积可能会有什么变化呢?比如,一个因数36不变,把另一个因数30乘2,或者把30乘10,积会有什么样的变化呢?再比如,一个因数30不变,另一个因数36乘8,或者乘100,积又会有什么样的变化呢?能不能来猜一猜?

探索规律教学反思13

今天我教学的是探索图形的规律规律这节课,课结束后觉得自己以下几个方面没有处理好。

1、对课标的把握不准。

在教学建议里,有这样一段话:“需要说明的是,图形中的规律旨在让学生经历一个直观操作、探索发现的过程,体验发现规律的方法,对于具体所涉及到的规律是什么,在此不作要求。” 到底让不让学生动手用小棒摆三角形,这是从备课开始就一直困扰着我的问题。考虑到本节课的重点,应该是观察图形,发现规律,而不是动手操作,而且认为,一眼就能看清小棒用了多少根的图形,有什么必要再花时间让学生摆呢,于是最后决定不摆,直接分阶段出示图形。现在看来,没让学生经历一个直观操作过程,也就是对课标里的建议“图形中的规律旨在让学生经历一个直观操作”的过程没有充分理解。在教学过程中,把活动重点放在让学生经历一个直观操作,在操作中体验并探索发现,体验发现规律的方法,应该是本节课的一个教学重点,学生动手操作的过程不应该省略。

2、而且给学生独立思考,找规律的时间少了。

教材呈现的规律是这两种方法:一是3加上2乘三角形个数减1的方法,第二种是把每个三角形先按3根小棒来计算,再减去重复的根数。而两个班的学生都还发现了一种,就是先假设每个三角形都只用两根小棒,这样就比实际小算了一根小棒,于是最后再加一根小棒,也就是就2乘三角形的个数后再加1。第一种方法,开始时,学生是很难想到用这种方法来解决问题,大多数学生都没有发现,经老师引导后,成绩好的学生才发现。而第第二种方法,由于有了第一种方法的基础,所以部分思维灵敏的学生能马上想到。倒是2n+1的方法学生更易于理解与接受。现在想来,这也许是因为一是少了让学生动手操作这个环节,二是没有让时间给学生充分独立思考,把规律展示在本子上,再小组内交流,最后集体交流后得出规律,而是看到学生发现规律有困难时,就马上引导学生去思考了,这样局限了学生的思维,才会出现这种状况的吧。

探索规律教学反思14

教学是一项复杂的活动,它的开放性使课堂呈现出丰富性和多变性。教学活动的变化发展有时和教师的预设相一致,有时却是不同的,随时会有新的情况出现。当教学不再按教师的预设开展,这时,就需要教师根据实际情况灵活选择,甚至放弃原有的教学预设,重新整和,形成新的教学方案。所以,课堂上,教师要时时关注学生的生成,重视学生的生成,从中及时捕捉于课堂教学有益的生成。

例如;第2题“按下图方式摆放桌子和椅子”。教参中提供的答案是“6+4(N-1)”,只有很少的学生找到了这个规律,对于大多数学生而言有一定的难度。但有一部分学生找出了这样的规律“2+4N”,而且,通过查看学生的答案,我发现这一规律学生更容易发现、理解、掌握。本来我是打算重点讲一讲第一个规律的,看到这种情况后,我放弃了原有的预设,改为让学生自己讲解、验证和体会发现的规律。这样既降低了学习的难度,完成了教学要求,又突出了学生的主体地位,大大激发了学生学习的兴趣。

另外,巩固与应用1.找规律,填一填。(1)8,11,14,17,(),23,();(2)4,9,16,25,(),49,64;(3)1,8,37,(),125,();(4)3,6,9,15,24,(),63,();

同一题学生也发现了不同的规律,这是我没有预设到的,课堂上针对学生不同的发现,我感到的是惊喜,并及时给予了肯定与赞赏。由此我感到,教师要为学生营造一个开放的课堂环境,给学生充分的时间和空间,创设宽松、民主、愉悦的课堂教学氛围,才会有可能。

当然,课堂也有一些错误的、不合适、意料之外的生成,例如学生做的课前调查,交流时我发现许多学生找到的不是数学规律,仅仅是生活中的数学现象或和数学有关的生活事件。看来,学生并没有理解“数学规律”的真正含义,所以,教师有必要帮助学生区分理解什么是有趣有价值的“数学规律”。

探索规律教学反思15

《找规律》的第一课时。本课时让学生找的都是一些直观图形和事物的变化规律,所以我在课堂中结合了多媒体来辅助教学,让学生能在直观、生动的学习环境中找出事物的变化规律。这节课让学生能够从中感受到学习的乐趣,并主动地去探求知识,发展思维。

在教学中为他们创建一个发现、探究的思维空间,使学生能更好地去发现,去创造。在这一理念的指导下,我以学生喜欢的“猜花的颜色”为引子,通过“找简单的规律——画规律——找生活中的规律——动手创造规律”等活动。使学生在自己喜欢的实践活动中探究、发现事物的规律,培养学生初步的观察、概括、推理能力,以及提高学生间相互合作的意识。

进行数学活动的教学。我设计了找一找、涂一涂、摆一摆,排一排等活动,让学生亲身经历发现规律。通过排队把知识进一步的拓展,从而让学生再创造出不同规律来。激发学生的创新意识。

数学来源于生活,又服务于生活。在教学中,我把知识进行拓展,让学生都纷纷举出生活中有规律的事物。通过找生活中的规律并欣赏,让学生感受到数学就在身边,对数学产生亲切感。

这节课,我和同学融为一体,顺利地完成教学任务。在整个教学活动中,愉快时刻荡漾在课堂上,创新,自主探究,师生互动,生生互动成为课堂的主旋律。

《探索规律教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式